On Tail Index Estimation for Dependent, Heterogeneous Data

نویسنده

  • JONATHAN B. HILL
چکیده

In this paper we analyze the asymptotic properties of the popular distribution tail index estimator by Hill (1975) for dependent, heterogeneous processes. We develop new extremal dependence measures that characterize a massive array of linear, nonlinear, and conditional volatility processes with long or short memory. We prove that the Hill estimator is weakly and uniformly weakly consistent for processes with extremes that form mixingale sequences and asymptotically normal for processes with extremes that are near epoch dependent (NED) on some arbitrary mixing functional. The extremal persistence assumptions in this paper are known to hold for mixing, L p-NED, and some non-L p-NED processes, including ARFIMA, FIGARCH, explosive GARCH, nonlinear ARMA-GARCH, and bilinear processes, and nonlinear distributed lags like random coefficient and regime-switching autoregressions. Finally, we deliver a simple nonparametric estimator of the asymptotic variance of the Hill estimator and prove consistency for processes with NED extremes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On functional central limit theorems for dependent, heterogeneous arrays with applications to tail index and tail dependence estimation

Article history: Received 18 September 2007 Received in revised form 27 June 2008 Accepted 21 September 2008 Available online 2 October 2008

متن کامل

Distributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Simultaneous Tail Index Estimation

• The estimation of the extreme-value index γ based on a sample of independent and identically distributed random variables has received considerable attention in the extreme-value literature. However, the problem of combining data from several groups is hardly studied. In this paper we discuss the simultaneous estimation of tail indices when data on several independent data groups are availabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010